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Abstract

Accurate brain tumor segmentation is crucial for neuro-oncology diagno-
sis and treatment planning. Deep learning methods have made significant
progress, but automatic segmentation still faces challenges. These include tu-
mor morphological heterogeneity and complex three-dimensional spatial rela-
tionships. This paper proposes a three-tier fusion architecture that achieves
precise brain tumor segmentation. The method processes information pro-
gressively at the pixel, feature, and semantic levels. At the pixel level,
physical modeling extends magnetic resonance imaging (MRI) to multimodal
data. This includes simulated ultrasound and synthetic computed tomogra-
phy (CT). At the feature level, the method achieves Transformer-based cross-
modal feature fusion through multi-teacher collaborative distillation. The
mechanism integrates three expert teachers (Tyri, Tus, Tor). At the seman-
tic level, clinical textual knowledge generated by GPT-4V transforms into
spatial guidance signals. This transformation uses Contrastive Language-
Image Pre-training (CLIP) contrastive learning and Feature-wise Linear Mod-
ulation (FiLLM). These three tiers work together to form a complete process-
ing chain. The chain spans from data augmentation to feature extraction to
semantic guidance. We validated the method on the Brain Tumor Segmen-
tation (BraTS) 2020, 2021, and 2023 datasets. The model achieves average
Dice coefficients of 0.8665, 0.9014, and 0.8912 on the three datasets, respec-
tively. The 95% Hausdorff Distance (HD95) reduces by an average of 6.57
millimeters compared to the baseline. This method provides a new paradigm
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for precise tumor segmentation and boundary localization.
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1. Introduction

Magnetic resonance imaging (MRI) segmentation of brain tumors is fun-
damental for neuro-oncology diagnosis and treatment planning. Gliomas
present significant challenges due to their infiltrative growth patterns, mor-
phological heterogeneity, and multiple sub-regions [1, 2|. Different sub-
regions have different prognostic significance. Contemporary imaging proto-
cols typically acquire multiple MRI sequences. These include T1-weighted,
contrast-enhanced T1-weighted (T1ce), T2-weighted, and fluid-attenuated
inversion recovery (FLAIR) [1]. Each sequence provides complementary tis-
sue characterization information. Recent deep learning methods have made
remarkable progress, particularly three-dimensional convolutional neural net-
works (CNNs) [3, 4] and U-Net [5] variants with encoder-decoder architec-
tures. Fully automatic networks [6] have shown application potential in this
field. However, these methods still face limitations. They struggle with
blurred tumor boundaries, morphological heterogeneity, and multimodal in-
formation integration.

Attention mechanisms provide a theoretical framework for feature selec-
tion and fusion. They work through learnable information bottlenecks that
selectively enhance task-relevant information while suppressing redundant
information. Channel attention [7] identifies important feature dimensions.
Spatial attention [8] localizes key regions. Self-attention mechanisms model
long-range dependencies |9, 10]. These mechanisms show significant advan-
tages when processing brain tumor images with target-background imbal-
ances and infiltrative boundaries [11, 12]. They effectively capture weak
lesion signals and significantly improve segmentation accuracy. However,
existing methods often apply attention mechanisms in isolation at a single
stage. They fail to explore synergistic effects across different levels. This
includes pixel-level multimodal generation, feature-level cross-modal align-
ment, and semantic-level text guidance. The result is relatively independent
processing at each level.

Multi-scale feature fusion is grounded in scale-space theory. This the-
ory indicates that different image structures have optimal representations at



different scales. In brain tumor segmentation, coarse-scale features capture
macroscopic lesion distribution. Fine-scale features preserve boundary de-
tails and internal heterogeneous structures. Encoder-decoder architectures
extract multi-scale representations and use skip connections [13, 14]. These
connections fuse shallow details with deep semantics, achieving both global
consistency and local precision. Skip connections provide short paths for
gradient propagation. They effectively alleviate gradient vanishing and avoid
information bottlenecks. However, existing methods mainly focus on single-
level visual feature processing. They typically use simple channel concate-
nation or weighted fusion. They lack systematic mechanisms that integrate
different abstraction levels. This single-level processing cannot fully exploit
information complementarity at different levels. It limits the model’s ability
to understand complex lesion features.

To overcome the limitations of pure visual feature processing, introducing
high-level semantic knowledge has become critical. Contrastive Language-
Image Pre-training (CLIP) models [15] learn cross-modal semantic represen-
tations through contrastive learning. They maximize similarity of match-
ing pairs while minimizing similarity of mismatched pairs. This paradigm
demonstrates advantages in medical image segmentation. It establishes se-
mantic alignment between visual patterns and radiological terminology [16].
It encourages discriminative feature boundaries between different pathologi-
cal tissues. It also provides visual-semantic prior knowledge from large-scale
pre-training [17|. However, applying CLIP to three-dimensional medical im-
age segmentation faces challenges. These include dimensional mismatch be-
tween two-dimensional (2D) pre-trained models and three-dimensional (3D)
volumetric data. There is also domain shift between natural and medical
images [18]. Additionally, task conversion from image-level understanding to
pixel-level segmentation poses difficulties. Existing work [19, 20| lacks sys-
tematic mechanisms. They cannot transform CLIP’s semantic understanding
into spatial guidance for 3D segmentation. They fail to establish complete
mapping paths from textual concepts to spatial attention allocation.

To address these challenges, this paper proposes a three-tier fusion archi-
tecture. It organically integrates pixel-level multimodal generation, feature-
level cross-modal fusion, and semantic-level concept guidance. The main
contributions include:

1. We propose a three-tier fusion architecture that integrates physics-
driven multimodal generation [21|, Transformer-guided cross-modal align-
ment, and CLIP-based semantic guidance. The integration occurs at the



pixel, feature, and semantic levels.

2. We design an asynchronous progressive multi-teacher distillation mech-
anism [22, 23]. It adaptively integrates knowledge from three expert teachers
(Tmri, Tus, Ter) and one semantic teacher (Tgpr.gav). The integration uses
dynamic weight adjustment.

3. We construct a concept-driven semantic guidance mechanism. It uses
CLIP contrastive learning and GPT-4V descriptions [24]. The mechanism
transforms medical concepts into spatial guidance through Feature-wise Lin-
ear Modulation (FiLM) and attention generation [25].

2. Related Work

Brain tumor segmentation technology development has important impli-
cations for neuro-oncology diagnosis and treatment. Gliomas present chal-
lenges due to their infiltrative growth, morphological heterogeneity, and mul-
tiple sub-regions. Different sub-regions have different clinical significance.
The BraT$S challenge |26, 27| established standardized evaluation protocols.
These protocols cover whole tumor (WT), tumor core (TC), and enhancing
tumor (ET). The challenge has promoted rapid development of deep learning
methods. However, precise segmentation still faces challenges. These include
blurred tumor boundaries and internal heterogeneity. Effective multimodal
MRI integration remains difficult. There is also a lack of mechanisms to
explicitly introduce clinical knowledge into the segmentation process.

2.1. Multi-Scale Feature Fusion

The encoder-decoder architecture based on U-Net [5] established the foun-
dational paradigm for medical image segmentation. It achieved this through
symmetric structure and skip connections. Subsequent research has evolved
along three main directions. Dimensional extension methods such as 3D U-
Net [3] and V-Net [4] process volumetric data to capture complete spatial
relationships. Adaptive optimization methods like nnU-Net [6] achieve opti-
mal performance through automatic configuration. Multi-scale enhancement
methods strengthen cross-scale feature fusion. These include UNet++ [13],
Multi-Scale Reverse Attention Module (MSRAM) [28], and Region-Attention
Fusion Network (RFTNet) [29]. Multi-scale concepts have also been ap-
plied to other tasks. Multi-Scale Feature Network (MsfNet) [30] and Multi-
Scale Feature You Only Look Once (MSFYOLO) [31] achieve good results



in small object detection. Cross-scale Wavelet Transform Network (CWT-
Net) [32] combines cross-scale wavelet transform with Transformers. Recent
generative models have also shown potential. Diffusion methods [33, 34, 35|
generate high-quality segmentation through conditional denoising. Multi-
modal generation techniques [36, 37| improve generalization. However, these
methods mainly focus on single-level feature processing. They use simple
concatenation or weighted fusion. They lack systematic mechanisms that
integrate pixel-level data augmentation, feature-level cross-modal alignment,
and semantic-level concept guidance. This makes it difficult to fully exploit
information complementarity at different abstraction levels.

The three-tier fusion architecture proposed in this paper systematically
deploys multi-scale processing mechanisms. It operates at the pixel, feature,
and semantic levels. The architecture establishes a complete information flow
from low-level data to high-level concepts through cross-level collaborative
optimization.

2.2. Attention Mechanisms

Attention mechanisms have evolved from single-dimensional to multi-
dimensional, and from local to global. Early methods achieve information
bottleneck optimization through data-driven weight allocation. These in-
clude Squeeze-and-Excitation Network (SE-Net) [7], Convolutional Block
Attention Module (CBAM) [8], and spatial and channel Squeeze and Ex-
citation (scSE) [12]. Medical-specific attention methods such as Attention
U-Net [11] improve segmentation accuracy by suppressing irrelevant regions.
The Transformer architecture brought paradigm shifts. Transformer-based
Brain Tumor Segmentation (TransBTS) [9] and TransUNet [10] introduced
self-attention mechanisms. They broke through local receptive field limita-
tions. Hybrid architectures combine CNN’s local feature extraction with
Transformer’s global dependency modeling. These include U-Net Trans-
former (UNETR) [14] and Swin U-Net Transformer (SwinUNETR) [38].
Methods incorporating domain priors attempt to use clinical knowledge to
guide attention allocation. Examples include Swin Transformer-based Brain
Tumor Segmentation (SwinBTS) [39] and Clinical Knowledge-Driven Trans-
BTS (CKD-TransBTS) [40]. However, these methods often apply attention in
isolation at single stages. They lack systematic deployment across pixel-level
multimodal generation, feature-level cross-modal alignment, and semantic-
level text guidance. This results in relatively independent processing at each
level.



This paper systematically deploys attention mechanisms at multiple lev-
els. These include cross-modal alignment in feature fusion, feature refinement
in the encoder, and spatial guidance at the semantic level. This forms a com-
plete attention flow from low-level features to high-level semantics.

2.3. Vision-Language Models

Vision-language pre-trained models have opened new directions for med-
ical image analysis. CLIP [15] and Vision Transformer (ViT) [17] establish
strong zero-shot transfer capabilities. However, they suffer from domain shift
between natural and medical images. Global-Local Representations for Im-
ages using Attention (GLoRIA) [16] and Biomed CLIP [18] narrow the domain
gap through medical domain adaptation. They achieve excellent performance
in image-level tasks. Recent work explores weakly supervised segmentation
through text prompts. Examples include Zhao et al. [19] and MedCLIP-
SAM [20]. However, these are mainly limited to 2D images. Progress in
multimodal generative artificial intelligence (AI) shows that text descriptions
can guide MRI synthesis [42]. GPT-4V demonstrates capabilities in radiolog-
ical analysis [24]. However, current research faces key challenges. There are
dimensional gaps between 2D pre-trained models and 3D medical volumes.
Domain shift exists between natural and medical images [18]. Systematically
transforming contrastive learning advantages into spatial guidance mecha-
nisms remains difficult. Existing work [19, 20] lacks complete design. It
cannot transform CLIP’s semantic understanding into spatial guidance for
3D segmentation.

This paper resolves dimensional mismatch through a 3D-2D semantic
bridging mechanism. It extracts representative slices from three orthogonal
planes and fuses multi-view semantic information. We design a cross-modal
semantic guidance mechanism. It transforms CLIP’s image-level semantic
understanding into pixel-level spatial guidance signals. This transformation
uses FiLM and spatial attention generation [25].

3. Method

This paper proposes a multimodal brain tumor segmentation method
based on a three-tier fusion architecture that systematically integrates pixel-
level, feature-level, and semantic-level processing. As shown in Figure 1,
the method employs three parallel pathways: the MRI teacher Tygrr pro-
cesses original sequences, the ultrasound teacher Tys uses simulated ultra-



sound from the DiffUS module, and the CT teacher Tt1 processes synthetic
CT from density inference. Cross-modal feature fusion integrates knowledge
from these expert teachers into the student network. Meanwhile, GPT-4V
generates clinical descriptions from representative MRI slices, which CLIP
transforms into semantic guidance Fjp through contrastive learning. The
FiLM module then injects this semantic information into the student net-
work’s features, achieving concept-to-space transformation. This processing
chain—spanning data augmentation, feature extraction, and semantic guid-
ance—simulates the cognitive process of radiologists combining visual obser-
vation with clinical knowledge.

3.1. Pizel-Level Fusion: Multimodal Data Generation and Preprocessing

Pixel-level fusion optimizes the original MRI data and generates comple-
mentary modalities. This provides a rich multi-source data foundation for
subsequent feature extraction. After the four-channel MRI data enters the
system, the data flows to three parallel paths. The physical rendering path
generates simulated ultrasound images. The density inference path gener-
ates synthetic CT images. The preprocessing path optimizes the original
MRI sequences.

The physical rendering path uses the DiffUS module to convert MRI to
simulated ultrasound images. To establish the mapping between MRI signal
intensity and ultrasound acoustic properties, this module first converts the
MRI volume to an acoustic impedance representation:

Zacoustic = fMRIHZ (IMRI; emapper) (1)

Here, Iyrr represents the input MRI volume data. The function fyri_z is
a learnable mapping function implemented by a small convolutional neural
network. The parameter Opnapper Tepresents the trainable parameters. The
output Zacoustic 1S the acoustic impedance volume. This mapping process
learns the nonlinear relationship between MRI signal intensity and tissue
density. It enables different tissue types to receive reasonable acoustic prop-
erties.

After obtaining the acoustic impedance, the system generates B-mode
ultrasound images through ray tracing algorithms. These algorithms simulate
ultrasound wave propagation:

Iuys = RayTrace(Zacoustic) @ PSFus (2)
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Figure 1: Overall framework of the three-tier fusion architecture. The architecture pro-
cesses MRI input through three parallel pathways: Tygrr (original MRI teacher), Tys
(simulated ultrasound teacher via DiffUS), and Tcr (synthetic CT teacher via density
inference). Feature maps and outputs from the three teachers guide the student network
through cross-modal feature fusion. GPT-4V generates clinical descriptions from MRI
slices. CLIP contrastive learning transforms these into semantic guidance F3p. The FiLM
(Feature-wise Linear Modulation) module modulates student features with semantic infor-
mation. This enables precise segmentation through multi-teacher distillation (Lyesp and

»Cfeat ) .



The operator RayTrace(-) represents the ray tracing process. It simulates
wave reflection, refraction, and attenuation at tissue interfaces. The symbol
® denotes convolution. The function PSFyg is the point spread function. It
models depth-dependent blurring and speckle noise. This physics-driven gen-
eration captures strong echo features at tumor boundaries. It also captures
heterogeneous echo patterns internally.

The density inference path generates synthetic CT through Bayesian mix-
ture modeling:

K
pUer|Tvrn) = Y meN (Iors i, Si) (3)
k=1

Here, K represents the number of tissue types. The weight 7 is the mixture
weight satisfying Zk{il 7, = 1. The distribution N (-; ug, Xy) represents a
Gaussian distribution. Statistical Parametric Mapping 12 (SPM12) estimates
its parameters. This model expresses that each voxel’s CT value comes from
a probabilistic mixture of multiple tissue types.

3.2. Feature-Level Fusion: Cross-Modal Feature Extraction and Multi- Teacher
Collaborative Distillation

The feature-level fusion layer transforms pixel-level generated heteroge-
neous data into unified high-level semantic representations. This stage ad-
dresses the fundamental challenge of fusing features from different imaging
modalities. These features reside in their own independent representation
spaces.

The cross-modal alignment network identifies semantically related modal
correspondences by computing similarity between features. Despite differ-
ent imaging mechanisms, semantically corresponding anatomical structures
should have correlated feature representations. Cosine similarity serves as

the metric:
Ay =g (4)
(VAT WA
Here, f; and f; represent feature vectors from different modalities or spatial
locations. The symbol - denotes inner product. The notation || - || denotes

L2 norm. This normalized metric is unaffected by feature magnitudes. It
enables fair comparison across modalities.

Based on the similarity matrix, the system achieves feature alignment
and fusion through attention mechanisms:

Falignea = Softmax(A) - [Fyrr; Fus; For (5)
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The notation [-; ;-] denotes feature concatenation. The function Softmax(A)
normalizes attention weights. This mechanism adaptively selects the most
relevant features from each modality. It improves recognition accuracy for
complex lesion patterns.

To systematically integrate expert knowledge from different modalities,
this paper proposes an asynchronous progressive multi-teacher distillation
mechanism. Knowledge distillation transfers dark knowledge from teacher
models to student models. The mechanism constructs three expert teachers
and one semantic teacher. The MRI teacher Tyg; excels at identifying bound-
aries between tumor parenchyma and normal brain tissue. The CT teacher
Tt focuses on density anomaly detection for calcification and hemorrhage.
The ultrasound teacher Tyg provides precise contour localization. The GPT-
4V semantic teacher Tgpr4v outputs structured knowledge consistent with
clinical diagnostic logic.

Knowledge transfer occurs through a dual-level distillation loss function:

»Cdistill = >\resp Z OZZKL<psHpT1) + )\feat Z ai||Fs — FTZ- g (6>

The first term is response-level distillation. Here, p, represents the student’s
class probability distribution. The notation pr, is the i-th teacher’s output.
The function KL(+||-) is Kullback-Leibler divergence measuring distribution
difference. The weight «; is the dynamic teacher weight. The second term
is feature-level distillation. Here, F and Fr, are student and teacher feature
maps. The notation || - ||3 measures Euclidean distance. This dual-level
strategy guides both prediction outputs and intermediate representations.

The cross-modal feature fusion module serves as the bridge between teacher
knowledge and student learning. Figure 1 illustrates how feature maps from
Twmri, Tus, and Tor aggregate through the cross-modal fusion mechanism.
The FiLM module injects semantic guidance F3p from CLIP into the fusion
process:

Fmodulated = FiLM<Ffused; F3D) = 7<F3D) ® Ffused + 6(F3D> (7>

The functions (-) and §(-) are learned scaling and shifting functions. They
modulate features based on semantic guidance. The symbol ® denotes
element-wise multiplication.

Each encoding stage includes knowledge fusion nodes. These nodes dy-
namically integrate teacher knowledge through gating:

FOy=FY 0@+ FO Lo (1 —o(GD)) 8)

student teacher
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The notation (I) denotes the network layer. The weight G() is a learnable
gating weight. The function o(-) is sigmoid activation. This allows adaptive
balancing between student features and teacher knowledge.

3.3. Semantic-Level Fusion: Cross-Modal Semantic Guidance Based on CLIP

Contrastive Learning

The lower portion of Figure 1 shows the semantic guidance pathway.
It begins with GPT-4V generating structured clinical descriptions. These
come from representative MRI slices extracted from three orthogonal planes.
The CLIP model receives these textual descriptions and the corresponding
image slices for contrastive learning. This produces the unified semantic
representation F3p. The FiLM module then injects this semantic signal into
the student network. It transforms high-level medical concepts into spatial
guidance for precise segmentation.

The CLIP model [15] learned powerful cross-modal semantic representa-
tion capabilities through contrastive learning on large-scale image-text pairs,
enabling it to establish semantic associations between clinical descriptions
and imaging features while enhancing discriminative boundaries between dif-
ferent pathological tissues. Contrastive learning in CLIP learns a joint em-
bedding space in which matching image-text pairs have high similarity while
mismatched pairs have low similarity. The model achieves this by maximiz-
ing the cosine similarity of positive pairs and minimizing that of negative
pairs. Contrastive learning uses the InfoNCE loss function:

1 & exp (sim(v;, t;)/7)
Lerp = —— "
© N ; 2= . exp(sim(v;, ;) /7) Y

Here, v; and t; represent matched image and text features. The function
sim(+, ) represents cosine similarity. The parameter 7 is the temperature
controlling the distribution concentration. This loss function learns cross-
modal semantic representations. It maximizes matching pair similarity and
minimizes mismatched pair similarity.

To resolve the dimensional mismatch between CLIP and GPT-4V’s 2D
training and 3D medical volumes, this paper proposes a multi-view semantic
guidance mechanism. The system extracts representative slices from three
orthogonal anatomical planes (axial, coronal, sagittal) of the MRI volume,
sends them to GPT-4V to generate layered medical text descriptions, and
transforms these into semantic vectors via the CLIP text encoder. To form
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a unified semantic understanding of the entire 3D volume, the system fuses
semantic vectors from the three orthogonal views:

1 d
Fyp = 3 > FS (10)

de{axial, coronal, sagittal}

Here, F¢ represents the feature vector from the CLIP vision encoder for
slices in direction d. It comes from the last layer’s token output aggregating
global semantic information. This multi-view fusion strategy leverages the
complementarity of different anatomical planes. It avoids information bias
from a single perspective.

To transform abstract semantic vectors into concrete guidance for 3D seg-
mentation, this paper designs a cross-modal semantic guidance mechanism.
Dedicated mapping networks project visual features and semantic vectors to
a shared semantic space. The system then dynamically fuses them through
gating:

Gtext = U(Ftext_mapped) (11>

Fcombined = Fvisionimapped © Gtext + thextimapped O] (1 - Gtext) (12>

The system processes Fiexi mapped through sigmoid to obtain gating signal
Glext- This indicates the degree to which text information should be adopted
for each feature channel. This gating mechanism dynamically determines
through learned weights. It decides the degree to which each position relies
on visual information or text semantics.

Multi-head self-attention mechanisms further refine the fused features:

Frusea = LayerNorm (Fiompined + MultiHead(Feompined)) (13)

The function MultiHead(-) represents multi-head self-attention. It divides in-
put features into multiple heads along the channel dimension. This captures
long-range dependencies and global tumor structures. It models dependen-
cies between any two positions.

A semantic attention generation mechanism transforms specific concepts
in medical descriptions into explicit spatial localization signals:

Msemantic - U(COHVI x1x1 ( [Fguideda Sspatial] )) (14>

Fﬁnal = Fguided © Msemantic + Fguided (15>
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Here, Sgpatial is the semantic vector expanded to match feature map dimen-
sions. The function Conviyix1(+) learns to generate spatial weights based
on joint visual-text information. The mask Mg antic modulates activation
strength. Positions matching text descriptions receive stronger responses.

For the clinically critical ET and TC regions, the system deploys dedi-
cated semantic enhancement modules:

YETienhanced - YiaaseiET © U(fconv(Fdecoderla Ffused)) (16)

Here, Ypase T represents preliminary ET prediction. The features Fyecodert
are shallow decoder features preserving spatial details. The function feony (-, )
is an attention generation network. This enables accurate localization of
small-volume, high-complexity regions. It combines clinical text with visual
features.

4. Experiments

4.1. Experimental Setup

Datasets. This paper validates the effectiveness of the method on three
benchmark datasets from the BraTS Challenge: BraTS 2020, 2021, and
2023. Multiple international medical imaging institutions jointly organize
the BraTS challenge. It provides multi-center, multi-device glioma MRI data
collected from 19 medical centers worldwide [26]. Each case includes four co-
registered MRI sequences. These are T1-weighted (T1), contrast-enhanced
T1-weighted (T1ce), T2-weighted (T2), and FLAIR sequences. Professional
neuroradiologists perform layer-by-layer manual delineation based on unified
annotation protocols. Labels include three hierarchical sub-regions. ET cor-
responds to enhancement regions in Tlce sequences, representing actively
proliferating tumor parenchyma. TC includes ET, necrotic regions, and non-
enhancing tumor. WT encompasses TC and surrounding edema regions with
high T2/FLAIR signals. BraTS 2020 includes 369 training samples and 125
validation samples [26]. BraTS 2021 expands to 1251 training samples and
219 validation samples [27]. BraTS 2023 maintains 1251 training samples
while introducing more data from new medical centers [43]. The original
data has a spatial resolution of 240 x 240 x 155 voxels. Voxel spacing is
approximately 1 x 1 x 1 mm?.

Evaluation Metrics. This study uses the Dice Similarity Coefficient (Dice) [44]
and 95% Hausdorff Distance (HD95) [45] as evaluation metrics. The Dice co-
efficient calculates volumetric overlap: Dice = 2|AN B|/(]A| + |B|). Here, A
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represents the ground truth foreground and B represents the predicted fore-
ground. Values range from 0 to 1. HD95 first extracts surface voxel points
from predictions and ground truth. It calculates the minimum Euclidean dis-
tance from each surface point to the other surface in both directions. It then
merges bidirectional distances and takes the 95th percentile. This improves
robustness by excluding the largest 5% of outliers.

4.2. Comparison with Existing Methods

Table 1 systematically compares the proposed method with representa-
tive methods on BraTS 2020, 2021, and 2023. This provides a comprehen-
sive evaluation of the three-tier fusion architecture. Comparison methods
cover CNN architectures like nnU-Net [46], 3D U-Net [3], V-Net [4], and
SegResNet [54]. They include Transformer methods such as TransBTS [9],
TransBTSv2 [56], UNETR [14], SwinUNETR [38], and 3DUXNET [55]. Dif-
fusion models include DiffBTS [34], Diff-UNet [49]|, and FCFDiff-Net [35].
Hybrid architectures include Gate-UNet [48|, Optimized U-Net [50], CKD-
TransBTS [40], MedNeXt [51], and OMT-nnU-Net [52].

Table 1: Performance Comparison on BraTS Datasets. HD95 denotes the 95%
Hausdorff Distance.

Dice Coefficient HD95 (mm)
Dataset Year Method Avg WT TC ET Avg WT TC ET
2020 2020 nnU-Net [46] 0.854 0.890 0.851 0.820 14.55 8.50 17.34 17.80
2020 2021 TransBTS [9] 0.829 0.911 0.836 0.740 3.25 3.36 2.99 3.40
2020 2021 TransUNet [10] 0.825 0.892 0.825 0.758 3.22 3.15 2.89 3.62
2020 2021 UNETR [14] 0.816 0.902 0.813 0.732 4.90 4.31 5.74 4.64
2020 2022 SwinUNETR [38] 0.831 0.917 0.826 0.749 3.89 2.86 4.31 4.50
2020 2022 SwinBTS [39] 0.823 0.891 0.804 0.774 17.06 8.56 15.78 26.84
2020 2022 CKD-TransBTS [40] 0.836 0.898 0.841 0.770 2.96 242 3.45 3.02
2020 2022 FDiff-Fusion [47] 0.842 0.905 0.844 0.776 2.74 2.21 3.31 2.71
2020 2023 Gate-UNet [48] 0.850 0.914 0.845 0.791 3.78 2.68 4.29 4.38
2020 2023 Diff-UNet [49] 0.857 0.920 0.851 0.799 2.87 1.79 3.41 3.42
2020 2024 Opt-cNet [50] 0.860 0.922 0.856 0.802 2.47 1.55 2.70 3.16
2020 2025 DiffBTS [34] 0.864 0.922 0.867 0.804 2.47 1.63 2.49 3.28
2020 2025 FCFDiff-Net [35] 0.854 0.916 0.860 0.786 2.36 1.92 2.57 2.58
2020 2025 Ours (Full) 0.867 0.887 0.876 0.836 6.08 9.50 4.75 3.98
2020 2025 Ours (Baseline) 0.809 0.889 0.810 0.728 12.15 10.75 12.43 13.28
2021 2021 Ext nnU-Net [50] 0.884 0.928 0.878 0.845 10.61 3.47 7.62 20.73
2021 2021 TransBTS [9] 0.866 0.920 0.882 0.795 8.72 4.98 4.86 16.32
2021 2021 TransUNet [10] 0.871 0.919 0.877 0.818 8.86 6.16 7.34 13.09
2021 2021 UNETR [14] 0.854 0.890 0.847 0.825 11.14 14.42 10.22 8.79
2021 2022 SwinUNETR |[38] 0.890 0.926 0.885 0.858 5.21 5.83 3.77 6.02

Continued on next page
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Table 1 (continued)

Dice Coefficient HD95 (mm)
Dataset Year Method Avg WT TC ET Avg WT TC ET
2021 2022 SwinBTS [39] 0.866 0.918 0.848 0.832 11.40 3.65 14.51 16.03
2021 2023 CKD-TransBTS [40] 0.884 0.923 0.881 0.848 3.93 4.23 4.39 3.16
2021 2024 Opt-Unet [50] 0.894 0.928 0.903 0.852 1.71 1.50 1.68 1.96
2021 2024 Diff-Unet [49] 0.890 0.925 0.894 0.852 1.96 1.70 2.07 2.12
2021 2024 Gate-Unet [48] 0.877 0.907 0.876 0.848 294 292 2.76 3.16
2021 2025 FCFDiff-Net [35] 0.899 0.926 0.903 0.869 1.86 2.16 1.83 1.58
2021 2025 DiffBTS [34] 0.900 0.930 0.907 0.863 1.93 2.04 1.67 2.08
2021 2025 Ours (Full) 0.901 0.932 0.912 0.861 6.81 4.19 6.79 9.44
2021 2025 Ours (Baseline) 0.848 0.860 0.872 0.811 14.07 13.49 12.40 16.33
2023 2023 Faking It [43] 0.876 0.910 0.867 0.851 14.43 11.11 14.47 17.70
2023 2023 MedNeXt+Seg [51] 0.871 0.906 0.863 0.843 14.06 11.70 13.10 17.37
2023 2025 OMT-nnU-Net [52] 0.880 0.908 0.876 0.857 12.58 11.27 12.83 13.65
2023 2025 3D U-Net [3] 0.787 0.855 0.805 0.702 24.63 12.50 12.90 48.50
2023 2025 V-Net [4] 0.767 0.859 0.778 0.645 25.43 19.00 11.50 45.80
2023 2025 SegTransVAE [53] 0.779 0.868 0.792 0.678 24.13 18.20 11.20 43.00
2023 2025 SegResNet [54] 0.795 0.875 0.809 0.700 20.67 11.80 10.00 38.20
2023 2025 Attn U-Net [11] 0.812 0.889 0.823 0.725 17.73 9.80 8.70 32.70
2023 2025 UNETR [14] 0.829 0.895 0.830 0.743 15.83 8.90 8.20 30.40
2023 2025 SwinUNETR [38] 0.837 0.905 0.840 0.765 13.73 7.20 6.80 27.20
2023 2025 3DUXNET [55] 0.848 0.910 0.850 0.783 11.63 5.80 5.60 23.50
2023 2025 TransBTS [9] 0.848 0.913 0.835 0.795 9.90 4.80 9.00 15.90
2023 2025 TransBTSv2 [56] 0.859 0.918 0.860 0.800 8.00 4.00 5.00 15.00
2023 2025 Ours (Full) 0.891 0.917 0.899 0.858 12.17 8.98 11.21 16.33
2023 2025 Ours (Baseline) 0.830 0.854 0.842 0.794 18.55 15.29 17.44 22.93

Note: Some methods show significantly lower Hausdorff Distance metrics. This may stem from differ-
ences in calculation methods. Two implementations exist. The first is contour point-based, extracting
only boundary points. The second is voxel-based, considering all foreground voxels. Our method adopts
the BraT$ official voxel-based standard [26, 45].

Table 1 shows that the proposed method achieves average Dice coefficients
of 0.8665, 0.9014, and 0.8912 on the three datasets. Compared to CNN
methods, the method surpasses nnU-Net by approximately 1.5 percentage
points on BraTS 2020. The key advantage is that the cross-modal alignment
mechanism establishes long-range dependency modeling through Transform-
ers. Convolution struggles with global spatial relationships. Compared to
Transformer methods, the proposed method shows 3 to 8 percentage point
improvements. The core advantage lies in systematic integration across three
tiers beyond pure visual processing. Compared to diffusion models, better
TC and ET performance reflects semantic guidance’s advantage over random
denoising. TC Dice reaches 0.8758 vs 0.8668, and E'T Dice reaches 0.8364 vs
0.8041 on BraTS 2020. Medical concepts transform into spatial attention for
targeted enhancement.
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The method’s core contribution concentrates in the clinically critical ET
and TC regions. ET is a small-volume, blurred-boundary target with varied
morphology. GPT-4V-generated clinical descriptions combined with CLIP’s
discriminative representations benefit ET. They enable understanding of con-
cepts like ring enhancement. They transform these concepts into concrete
spatial localization. TC requires simultaneous discrimination of necrosis,
cystic change, and enhancement. Multi-teacher distillation integrates Tyigri,
Tor, Tus, and Tgpr.gv knowledge. This provides complementary expertise.
The WT region shows relatively stable performance. Whole tumor bound-
aries are clear and large in volume. Most methods achieve good results for
WT.

4.8. Ablation Studies

4.8.1. Main Component Ablation

Table 2 reports systematic ablation experiments. We sequentially re-
move pixel-level multimodal generation, feature-level multi-teacher distilla-
tion, and semantic-level CLIP-GPT guidance. This quantifies each compo-
nent’s contribution.

Table 2: Ablation Study on Main Components

Dice Coefficient HD95 (mm)

Dataset Year Configuration Avg WT TC ET Avg WT TC ET

2020 2025 Full Method 0.867 0.887 0.876 0.836 6.08 9.50 4.75 3.98
2020 2025 w/o Semantic 0.845 0.889 0.844 0.802 8.68 9.21 885 797
2020 2025 w/o Synth CT 0.848 0.863 0.864 0.817 8.30 12.45 6.05 6.39
2020 2025 w/o Sim US 0.853 0.870 0.865 0.824 7.80 12.89 5.79 4.71
2020 2025 w/o Distill 0.845 0.872 0.853 0.808 894 11.07 7.45 8.29
2020 2025 Baseline 0.809 0.889 0.810 0.728 12.15 10.75 12.43 13.28

2021 2025 Full Method 0.901 0.932 0.912 0.861 6.81 4.19 6.79 9.44
2021 2025 w/o Semantic 0.877 0.926 0.881 0.824 991 5.13 9.24 15.37
2021 2025 w/o Synth CT 0.871 0.887 0.889 0.837 11.99 11.35 11.24 13.38
2021 2025 w/o Sim US 0.880 0.897 0.897 0.846 9.89 897 9.02 11.66
2021 2025 w/o Distill 0.877 0.920 0.884 0.827 10.25 6.13 10.13 14.50
2021 2025 Baseline 0.848 0.860 0.872 0.811 14.07 13.49 12.40 16.33

2023 2025 Full Method 0.891 0.917 0.899 0.858 12.17 8.98 11.21 16.33
2023 2025 w/o Semantic 0.871 0.916 0.868 0.830 14.44 9.29 14.78 19.24
2023 2025 w/o Synth CT 0.871 0.888 0.882 0.841 13.86 11.33 12.89 17.35
2023 2025 w/o Sim US 0.877 0.894 0.890 0.848 13.12 10.24 12.13 16.98
2023 2025 w/o Distill 0.865 0.893 0.867 0.835 14.57 10.30 14.98 18.44
2023 2025 Baseline 0.830 0.854 0.842 0.794 18.55 15.29 17.44 22.93
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The complete method improves average Dice by 5.37 to 6.12 percentage
points over baseline. It improves Hausdorfl Distance by 34.4% to 51.6%.
The three tiers show differentiated functional division. Removing semantic
guidance causes 1.99 to 2.44 percentage point drops. ET is most severely
affected with 2.81 to 3.75 point drops. This reveals semantic guidance’s core
value for high-complexity tasks. Abstract concepts provide prior knowledge
unavailable to pure visual features. Synthetic CT removal causes 1.85 to 3.04
point drops. ET is most affected with 1.66 to 2.44 point drops. Density infor-
mation identifies heterogeneous structures like calcification and hemorrhage.
Simulated ultrasound contributes 1.34 to 2.16 point improvements. Haus-
dorff Distance deterioration (3.98 mm vs 4.71 mm on BraT$S 2020) proves
physics-driven ultrasound’s value. Strong echo features aid boundary refine-
ment. Feature-level distillation causes 2.20 to 2.60 point drops. TC is most
damaged with 2.25 to 3.12 point drops. Tumor core discrimination requires
integrating complementary knowledge from multiple imaging mechanisms.

4.8.2. Semantic-Level Internal Mechanism Ablation

Table 3 focuses on semantic-level internal mechanisms. We separately
remove multi-view guidance, cross-modal fusion, and semantic attention gen-
eration.

Table 3: Semantic-Level Mechanism Ablation

Dice Coefficient HD95 (mm)

Dataset Year Method Avg WT TC ET Avg WT TC ET

2020 2025 Full Method 0.867 0.887 0.876 0.836 6.08 9.50 4.75 3.98
2020 2025 w/o Multi-view 0.857 0.890 0.864 0.818 7.27 9.32 6.04 6.45
2020 2025 w/o Sem Fusion 0.860 0.890 0.868 0.821 6.98 9.27 6.00 5.67
2020 2025 w/o Sem Attn  0.855 0.889 0.857 0.820 7.42 9.55 7.03 5.67

2021 2025 Full Method 0.901 0.932 0.912 0.861 6.81 4.19 6.79 9.44
2021 2025 w/o Multi-view 0.887 0.926 0.894 0.842 8.89 5.14 9.33 12.20
2021 2025 w/o Sem Fusion 0.889 0.930 0.891 0.845 849 4.24 9.35 11.87
2021 2025 w/o Sem Attn  0.885 0.925 0.888 0.841 9.36 5.33 9.92 12.83

2023 2025 Full Method 0.891 0.917 0.899 0.858 12.17 8.98 11.21 16.33
2023 2025 w/o Multi-view 0.878 0.916 0.880 0.840 13.53 9.12 13.33 18.13
2023 2025 w/o Sem Fusion 0.881 0.920 0.881 0.840 13.14 8.73 12.98 17.71
2023 2025 w/o Sem Attn  0.873 0.914 0.872 0.832 13.95 9.39 13.72 18.75

The three sub-modules form a layer-by-layer progressive mapping chain.
Multi-view guidance resolves the 2D-3D dimensional gap with 0.93 to 1.40
point drops when removed. Single-perspective slices cannot represent 3D
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tumor structures. Complementary information from orthogonal planes forms
global understanding. This is crucial for identifying infiltrative growth and
spatial heterogeneity. Cross-modal fusion enables concept-feature alignment
with 0.67 to 1.27 point drops when removed. It maps radiological descriptions
to the same semantic space as visual features. Gating dynamically determines
reliance on visual versus textual information. Semantic attention generation
shows most pronounced drops when removed. These include 1.11 to 1.86
points overall and 1.60 to 2.56 points for ET. Hausdorff Distance increases
from 9.44 mm to 12.83 mm on BraT§S 2021. This reveals its critical role in
transforming abstract concepts into explicit spatial weight distributions. It
achieves the conversion from understanding what the tumor is to knowing
where the tumor is.

4.4. Visualization Analysis

Figure 2 shows ITK-SNAP [57] 3D visualization. WT (green), TC (yel-
low), and ET (red) overlay on grayscale MRI across three orthogonal views.
The red ET exhibits ring enhancement with irregular boundaries. Yellow
TC surrounds it. Green WT extends finger-like along white matter tracts.
This suggests infiltrative edema spreading along sulci and periventricular di-
rections. The three-dimensional coherence and boundary consistency align
with quantitative trends. ET and TC Dice improve while Hausdorff Distance
reduces. This demonstrates that pixel-level multimodal generation provides
boundary and density priors for sharper contours. Feature-level alignment
reduces mis-segmentation at tissue junctions. Semantic-level CLIP guidance
transforms concepts into spatial attention. This is effective for small-volume
ET regions.

4.5. Clinical Interpretability: Semantic Attention Case Study

Figure 3 visualizes semantic attention distribution. ET attention forms
closed high-value bands at enhancement ring edges with suppressed centers.
This is consistent with ring enhancement and necrotic core radiological pat-
terns. TC attention extends inward and outward. It covers necrotic and
non-enhancing parenchyma with smoother boundaries. W'T attention ex-
tends along FLAIR high signals. It shows finger-like spread along white
matter tracts. This reflects infiltrative edema spatial trajectories. CLIP and
GPT-guided semantic attention increases weights at blurred boundaries or
irregular morphologies. It maintains low responses to non-tumor structures
like ventricles and vessels. This suppresses false detections. The weighted
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Figure 2: Three-dimensional visualization based on ITK-SNAP: grayscale MRI with whole
tumor (green), tumor core (yellow), enhancing tumor (red) masks displayed in axial, sagit-
tal, and coronal views.
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fused heatmap gives peak values in multi-head consensus regions. It shows
continuous boundaries and reduced speckle artifacts. This improves focus
and recall of small-volume ET. This visualization provides surgical and ra-
diotherapy reference. The ET head suggests active tumor margins. The TC
head reveals core extent. The W'T head reflects edema expansion. Semantic
attention provides evidence for why enhance or why suppress. This helps
radiologists quickly locate suspicious regions for manual corrections.

4.6. Computational Efficiency Analysis

Table 4 compares the complete method and ablation variants. It examines
computational complexity, inference speed, and resource consumption. This
analyzes the accuracy-cost trade-off.

Table 4: Computational Efficiency Analysis

Configuration Params (M) FLOPs (G) Time (ms) Throughput (s/s)

Baseline 29.55 575.89 40.94 24.42
w/o Synth CT 184.48 738.88 84.09 11.89
w/o Sim US 184.54 766.35 84.36 11.85
w/o Distill 183.72 760.17 81.79 12.23
w/0 Semantic 31.36 747.69 65.10 15.36
w/o Multi-view 31.36 747.69 65.17 15.35
w/o Sem Fusion 183.66 661.98 73.45 13.61
w/o Sem Attn 184.30 774.41 85.53 11.69
Full Method 184.55 774.67 88.12 11.35

The complete method shows significant increases in parameters, computa-
tion, and inference time compared to baseline. However, this computational
overhead yields substantial performance improvements. Average Dice im-
proves by 5.37 to 6.12 percentage points across three datasets. The clinically
critical ET region improves by 8.1% to 14.9%. Hausdorff Distance improves
by 28.8% to 70.0%. Component-wise analysis shows reasonable accuracy-
cost trade-offs. Pixel-level generation occupies only 4% to 5% of inference
time. Yet it brings 1.34 to 1.85 point Dice improvements. Multi-source data’s
contribution far exceeds computational cost. Feature-level distillation con-
tributes 2.20 points in TC with 6.39 ms additional time. This is important
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Figure 3: Semantic attention visualization: left column shows grayscale MRI; next three
columns are enhancing tumor, tumor core, whole tumor dedicated attention heatmaps;
rightmost column shows semantic attention (CLIP and GPT guided); second row gives
thermal overlay with base image, with leftmost being weighted fusion attention.
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for tissue type discrimination. Semantic-level fusion accounts for 82.9% of
parameters. Removing its sub-modules causes 1.60 to 2.56 point ET Dice
drops. This proves its irreplaceability in transforming concepts to spatial
attention. From a clinical perspective, surgical planning and radiotherapy
require much higher segmentation accuracy than speed. The 88.12 ms in-
ference time is completely acceptable. Nearly 15% accuracy improvement in
key regions directly affects treatment decision accuracy.

5. Discussion

The proposed method shows more obvious advantages in ET and TC re-
gions compared to WT. This is highly consistent with the design philosophy
of the three-tier fusion architecture. WT is a large-volume region with clear
boundaries. Most deep learning methods can already achieve good segmen-
tation for WT. This leaves limited room for improvement. In contrast, the
ET region has small volume, blurred boundaries, and varied morphology.
Traditional pure visual methods struggle to accurately identify ET. The se-
mantic guidance mechanism improves small target recognition. It transforms
clinical concepts like ring enhancement and irregular boundaries into spatial
attention. This transformation uses FiLM and attention generation. The TC
region requires simultaneous discrimination of multiple tissue types. These
include necrosis, cystic change, and enhancement. Multi-teacher distillation
integrates complementary multimodal knowledge to form synergy. Compar-
ison with diffusion models [58] shows that the proposed method achieves
better performance in small target regions. Semantic attention localization
provides this advantage. It reveals that semantic guidance surpasses random
denoising processes when handling irregular blurred boundaries.

Despite achieving good performance improvements, the three-tier fusion
architecture still has room for improvement. Pixel-level multimodal genera-
tion, feature-level multi-teacher distillation, and semantic-level GPT-4V calls
increase inference time by approximately 115%. Future work can optimize
this through lightweight networks, knowledge compression, and efficient se-
mantic extraction. Additionally, the proposed method performs consistently
across three BraTS datasets. However, all target gliomas as a specific dis-
ease. Cross-disease generalization ability remains to be verified. Medical text
descriptions at the semantic level need redesign for different diseases. Future
work can explore more general medical concept ontologies and cross-disease
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semantic transfer learning. This would apply the three-tier fusion concept to
a broader range of medical imaging tasks.

6. Conclusion

This paper proposes a three-tier fusion architecture for brain tumor seg-
mentation. It systematically integrates pixel-level multimodal generation,
feature-level cross-modal alignment, and semantic-level concept guidance.
Validation on the BraTS 2020, 2021, and 2023 datasets demonstrates sub-
stantial improvements in segmentation accuracy. This is particularly true for
clinically critical small-volume targets such as enhancing tumors. Ablation
studies confirm the synergistic contributions of each architectural component.
They also confirm the unique effectiveness of semantic-level CLIP-GPT guid-
ance for complex target localization. The proposed architecture establishes
a systematic pathway for integrating clinical knowledge with deep learning-
based segmentation. It bridges the gap between data-driven learning and
domain expertise in medical imaging. Computational efficiency and cross-
disease generalization remain areas for future optimization. However, the
method’s accuracy gains in key tumor regions provide meaningful clinical
value for diagnosis and treatment planning. This demonstrates the potential
of multi-tier fusion strategies in advancing medical image analysis.

Data Availability

The datasets used in this study are publicly available through the BraTS
Challenge:

e BraTS 2020: https://www.med.upenn.edu/cbica/brats2020/data.
html

e BraTS 2021: https://www.synapse.org/Synapse:syn25829067

e BraTS 2023: https://www.synapse.org/Synapse:syn51156910
All datasets are available for research purposes upon registration and

acceptance of the data usage agreement. Code will be available upon publi-
cation acceptance.
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